Discrete Event Simulation Of NASA's Remote Exploration and Experimentation

Project

Julia Dunphy Ph.D.

(REE)

and Stephen Rogstad

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena
CA 91109 USA
Julia.Dunphy@ijpl.nasa.gov
Stephen.Rogstad@jpl.nasa.gov

Background

The Remote Exploration and
Experimentation Project (REE) 1is a
new initiative at JPL to be able to
place a supercomputer on board a
spacecraft and allow large amounts of
data reduction and compression to be
done Dbefore science results are
returned to Earth. Since downlink
bandwidth is at a premium, this
project should lead to a much greater
science return from missions to
distant parts of the solar system.
The requirements for the project

include severe restrictions on
computer downtime - and errors
introduced by the harsh environment
of space. In particular, the

computer must be able to rapidly
recover from radiation-induced faults
and must also perform internal tests
to verify that those faults that do
not trigger the recovery system do
not result in erroneous data being

downlinked. In order to prove the
reliability and performance
requirements were possible, a fairly
significant modeling task was

initiated along side the experimental
work.

Modeling Methodology

Several university groups along with
JPL's own simulation group are
involved in this effort. The
university groups are working on
Markov modeling, automatic workload
generation tools and radiation
studies. The JPL modeling team is
building a large discrete event
simulation of a complete 5-year
mission using Hy-performix Workbench

as the core and new data
representations such as XML for the

workload, parameters and results.

This short paper only deals with the
JPL modeling team, though all the
approaches are naturally designed to
work together.

Design of the REE

The heart of the REE i1s the "Core
Cluster". The Core Cluster 1s a set
of four computer nodes that ensure
the reliability of the array at all
times. All decisions internal to the
Core Cluster are verified by voting
among the four nodes. There 1is a
remote executive (the REX) running on
the core cluster that 1s responsible

for interfacing with the main
spacecraft computer. The REX accepts
commands from the spacecraft and
forms application clusters of
computing nodes to host the

applications as they are accepted.
Also resident on the Core Cluster is

‘the health monitor. The health

monitor, as its name suggests, keeps
track of the health of each computing
node and uses this information in
deciding which nodes to include 1in
the application clusters as they are
formed and disbanded. It is possible
for an application to request
minimum, maximum and optimal numbers
of processing nodes, as available.
The application clusters themselves
are under the control of an
application manager. The application
manager looks after the nodes in its
cluster by checking for application
crashes, hangs, and the production of
erroneous data and cluster node

hardware problems. The REE is still
in initial design and some of these
preliminary ideas are subject to
change later. '

Design of the Model

The discrete event simulation uses
the Hy-performix Workbench tool.

The hardware is presently modeling at
a fairly high level since we do not
yet understand where the Dbottlenecks
are. The applications running on the
computer are quite complex and often
involve the same types of application
components such as fast Fourier
transforms, Garbor filters and K-
Means. We will be modeling these
reusable pieces as time permits to
allow the easy construction of more
complex calculations.

1. Workload Generation

The classical way to create the
workload for the model is to write a
file that describes the input
transactions. In our case the input
transactions are the commands to
start up applications, sensor inputs
showing that the available power is
low and events associated with faults

such as radiation events. This file
must be parsed, the model
transactions generated and their

attributes given values. Instead of
writing a regular file parser to
create the workload, we decided to
join the modern age and use XML for
the workload format. The workload
description is quite well suited to
XML and standard parsers such as the
SAX parsers from w3.org are easily
tallored to read any file that obeys
the rules of XML. There are several
big advantages in using XML:

1. As already mentioned, it 1is easy
to parse

2. You can look at through a web
browser and check for syntactic
errors

3. It can be run through a style
sheet to produce human readable
reports.

While most people think of XML as
related to 3java, the parsers also
exist for C and since SES uses C as
its language, this is what we used.

2. Model Parameters

‘Just like the workload, the model

parameter file can easily be
expressed in XML. To actually be
loaded, it must be pre-formatted in
the Workload syntax.

3. Fault Modeling

Most faults are due to transient
radiation bursts that cause Single
Even Upsets (SEUs). Most SEUs will
not cause memory errors because of
the error correction mechanisms
employed. However, sometimes they
can occur in such a way that the

error correction is ineffective.
Also, some caches are not error
corrected. These, together with

faults occurring in registers are
being modeled. When a fault occurs,
the error propagation is not trivial
to calculate. There are several
possible outcomes:

‘1. The application will crash.

2. The application will hang

3. The application will terminate
normally but with the wrong answer

4, The application will terminate
normally with correct data but take
more time.

We are attempting to get numbers
representing the probability of each
of these outcomes by measuring them
on a test bed.

Status

We have completed our first full
five-year scenario run successfully
and demonstrated that the system as
presently envisioned has a good
possibility of meeting the goals set
for it.

